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Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation
between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial
equation, which needs to be inverted in order to solve the diffusion tensor. The traditional way to do this
does not preserve the tensorial structure of the equation, which we consider a weakness in the method.

For a physically correct measurement procedure, the condition number of the acquisition scheme,
which is a determinant of the noise behavior, needs to be rotationally invariant. The method which tra-
ditionally is used to find such schemes, however, is cumbersome and mathematically unsatisfactory. This
is considered a second weakness, closely connected to the first.

In this paper we present an alternative inversion of the diffusion tensor equation, which does preserve
the tensor form, for arbitrary order, and which is named the direct tensor solution (DTS). The DTS is derived
under the assumption that the apparent diffusion coefficient in any direction is known, i.e. in the infinite
acquisition scheme.

Whenever the DTS is valid for a given finite acquisition scheme and for a given order, the condition
number is rotationally invariant. The DTS provides a compact, algebraic procedure to check this rotational
invariance. We also present a method to construct acquisition schemes, for which the DTS is valid for the
measurement of higher-order diffusion tensors.

Furthermore, the DTS leads to other mathematical insights, such as tensorial relationships between dif-
fusion tensors of different orders, and a more general understanding of the Platonic Variance Method,
which we published before.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion tensor imaging (DTI) [1] is an MRI technique that
characterizes anisotropic diffusion in tissues. It is widely applied
in the brain [2,3] and increasingly more in other tissues as well,
like muscles [4] and kidneys [5,6]. Anisotropic diffusion is caused
by the presence of collectively oriented cell structures, like the ax-
ons in white matter tracts, which allow a relatively easy random
motion of the water molecules in one direction (along the axons),
whereas the motion in other directions (perpendicularly to the ax-
ons) is more restricted.

Generalized diffusion tensor imaging (GDTI), introduced by
Özarslan and Mareci [7], is an extension of DTI to address the cross-
ing fiber problem, i.e. to describe the situation where more than one
structural orientation is present in a voxel. Whereas DTI describes
the diffusion with a second-order diffusion tensor, GDTI uses ten-
sors of higher order. Especially the fourth-order diffusion tensor
has already been used in a number of investigations [8–13].
ll rights reserved.
Both DTI and GDTI use a diffusion weighted sequence to measure
the apparent diffusion coefficient, A. The key part of such a sequence
is the diffusion weighting gradient or diffusion encoding gradient. The
timing and strength of this gradient determine the degree of diffu-
sion weighting, b, and the direction of the gradient, g, determines
the direction in which the diffusion is measured. (For a more de-
tailed treatment of a diffusion weighted sequence, see e.g. [3].)
The relation between the MRI signal without diffusion weighting,
S0, and the signal with diffusion weighting, S(b, g), is given by:

Sðb;gÞ ¼ S0e�bAðgÞ: ð1Þ

So when S0 and S(b, g) with chosen values of b and g are acquired,
A(g) can be calculated from Eq. (1). When the diffusion is isotropic,
A(g) has the same value in all directions and it is sufficient to mea-
sure in one direction only. In anisotropic tissues A(g) has to be mea-
sured in a number of directions.

In DTI, the directional dependency of A(g) is given by the
relationship:

AðgÞ ¼
X

i;j2fx;y;zg
gigjDij; ð2Þ

http://dx.doi.org/10.1016/j.jmr.2010.05.016
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where Dij are the elements of the second-order diffusion tensor, and
gi and gj are the components of the unit direction vector g. In GDTI a
generalization of Eq. (2) is used, with a tensor of order R:

AðgÞ ¼
X

i1 i2 ���iR2fx;y;zg
gi1 gi2 � � � giR Di1 i2 ���iR ; ð3Þ

Since the diffusion sequences which are used in practice always
measure the same A(g) value for g and �g, one can only determine
(generalized) diffusion tensors with even order, although theoretical
models using odd-order tensors have been published [14]. Further-
more, Eq. (3) implies that the diffusion tensor is symmetric, i.e. its
value does not change under permutations of the indices. The num-
ber of independent elements of a symmetric tensor of order R equals
M = (R + 1)(R + 2)/2 [7], so in order to determine the diffusion tensor,
A(g) has to be measured in a number of directions N P M.

The set of measurement directions, {g[1], g[2], . . . , g[N]}, is
called the acquisition scheme (also encoding scheme or sampling
scheme). Calculating the diffusion tensor from the measured appar-
ent diffusion coefficients, A[n] = A(g[n]), requires inverting Eq. (3).
Traditionally this is done using methods from linear algebra
[1,3], which is possible since Eq. (3) establishes a linear relation be-
tween the A[n] and the elements of D. To be able to apply linear
algebra, however, a regrouping of Eq. (3) is necessary: the indepen-
dent elements of D are put in a column, like a vector, Dm

(m = 1 � � �M), and Eq. (3) is rewritten into a matrix–vector equa-
tion: A[n] =

P
mGnmDm. Using the (pseudo-)inverse of the matrix

G one can calculate Dm.
This regrouping of a tensorial equation is the first of two funda-

mental weaknesses, or problems in the traditional way the (G)DTI
experiment is conducted, that form the reason for this paper. Ten-
sor equations have their own mathematical structure, properties,
and algebraic rules that allow an efficient mathematical analysis.
The central theme in tensor algebra is how equations behave under
transformations of the co-ordinate frame. E.g. if one derives scalars
following the rules of tensor algebra, these scalars always are rota-
tionally invariant. Furthermore, tensor algebra gives rise to com-
pact formulations which are particularly insightful. One of the
major feats of tensor algebra is the theory of general relativity [15].

Regrouping the elements of a tensor equation, is like writing out
all the components of a matrix equation, and trying to solve it
brushing aside the instruments of matrix algebra. Obviously this
is a contraproductive procedure: multiplying two rotations would
become quite complicated; finding a general expression for the
inversion of a set of linear equations would be practically impossi-
ble. Similarly we may be seriously wronging ourselves by disturb-
ing the structure of a tensorial equation.

The second fundamental problem of (G)DTI is about acquisition
schemes, and more precisely with the rotational invariance of the
condition number. The condition number, j, of an acquisition
scheme characterizes the noise properties of the acquisition
scheme, i.e. how the noise in the measurement data propagates
to the results [8,16–18]; the smaller j the better the noise proper-
ties. It is found in literature that the condition number of many
acquisition schemes, which are used in practice, varies when the
scheme is rotated [17,19]. Since j depends only on the acquisition
scheme (and not e.g. on the relative orientation of the tensor being
measured), this is equivalent to the statement that j varies with
rotations of the co-ordinate frame, constituting an undesirable sit-
uation: rotations of the co-ordinate frame are purely mathematical
and they should have no effect on any of the physical outcomes of
an experiment. For a physically correct measurement, rotational
invariance of j is a prerequisite.

In the literature much attention has been paid to investigating
acquisition schemes [e.g. 16–21] and schemes with an invariant
j have indeed been found. For a second-order tensor, these
schemes appear to have icosahedral symmetry, and a j of ½

p
10
(�1.58). For a fourth-order tensor, there is only one study which
found a scheme with an almost invariant j of 3.75 [8]. A problem
remains, however: the procedure to find these schemes is rather
cumbersome, it consists of simply trying a number of schemes,
and each time checking the variation of j under a large number
of rotations. This is a time consuming procedure, it is never conclu-
sive in a mathematical sense of the word, and it gives no insight in
what constitutes a proper scheme.

Because of the nature of the two problems, one expects they are
connected somehow, and therefore we formulate the following
two questions to investigate in this paper: (1) Does there exist a
general expression for the inverse of Eq. (3) that preserves the tensor
form? (2) Can we use this expression to formulate mathematical prop-
erties and a simple checking procedure for acquisition schemes with a
rotationally invariant condition number?

A general tensorial expression for the inverse of Eq. (3) should
not depend on any particular acquisition scheme; when investigat-
ing this, we therefore assume that the apparent diffusion coeffi-
cient, A, is known in all directions. This is also known as the
infinite acquisition scheme, which is, as [17] put it: ‘‘an ideal, albeit
impractical, sampling scheme [involving] an infinite number of
uniformly distributed directions, which would not privilege a spe-
cific set of orientations”. We will show below, that under these
conditions, the desired inverse expression of Eq. (3) can be derived
for arbitrary order; we name it the direct tensor solution (DTS).

Next we investigate the conditions for which the DTS is valid for a
finite acquisition scheme. There appears to be a relatively simple test
for this, and we find that if the direct tensor solution is valid for a spe-
cific order, then j is rotationally invariant. The maximum order for
which the DTS is valid depends on the specific acquisition scheme,
and is called the order of the acquisition scheme. We also present a
method to construct higher-order acquisition schemes, by the intro-
duction of weighting factors: a weighting factor in a way represents
the solid angle covered by the individual measurement direction.

The DTS actually provides more opportunities to gain mathe-
matical insight in (G)DTI. We show two more applications. The
DTS leads to a natural way of defining relations between tensors
of different orders. And finally, we investigate the consequences
of the DTS to the Platonic Variance Method, which we published
before [22].

A preliminary version of some of the results of this paper has
been published as an e-poster at a meeting [23].

1.1. Definitions and conventions

We use x as a short notation for the spherical co-ordinates:
x = (0, u), 0 = 0 � � � p and u = 0 � � � 2p. g(x) is the unit vector in
the direction x; in Cartesian co-ordinates:

gðxÞ ¼
sin# cos u
sin# sinu

cos#

0
@

1
A: ð4Þ

We use the following abbreviation to write the integral over the
sphere:Z

X
� � �dx ¼

Z 2p

0

Z p

0
� � � sin#d#du: ð5Þ

The operator SYM takes an arbitrary tensor F and turns it into a
symmetric tensor E by averaging over all permutations of the indi-
ces, P(i1, i2, . . . , iR):

Ei1 i2 ���iR ¼ SYMFi1 i2 ���iR ¼
1
R!

X
j1 j2 ���jR
2Pði1 i2 ���iRÞ

Fj1 j2 ���jR : ð6Þ

When the SYM operator is meant to act only on certain indices, this
is specified by subscripts underneath the SYM symbol.
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1
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π
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Ω

=
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π

=D jiijij )()()(   
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Ω

( )(SYM8
15   
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klijijkl =D δδ∫ ( )(84 klijijkl π ∫

Ω
))()((SYM105 gg δ− ωω ))()((SYM4 klji gg δ− ωω

) dA )()()()()(315+ ) ωωωωωω dAgggg lkji )()()()()(8
315+

( )(  
4

1
SYM16

35
mnklijijklmn =D δδδ−∫4 6π ∫

Ω
))()((SYM16

945
mnklji gg δδ+ ωω ))()((16 mnklji gg

))()()()((SYM3465 gggg δωωωω ))()()()((SYM16 mnlkji gggg δ− ωωωω

) dA )()()()()()()(3003 ) ωωωωωωωω dAgggggg nmlkji  )()()()()()()(16
3003+

Fig. 1. Direct tensor solutions for orders 0, 2, 4, and 6.
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The double factorial operator, !!, is defined as in [24]:

ð2nþ 1Þ!! ¼ 1 � 3 � � � ð2nþ 1Þ; ð�1Þ!! ¼ 1;

ð2nÞ!! ¼ 2 � 4 � � � ð2nÞ; 0!! ¼ 1
ð7Þ

Two useful properties, which follow from Eq. (7), are:

n! ¼ n!! � ðn� 1Þ!!; ð2nÞ!! ¼ n! � 2n ð8Þ

We chose not to use the more common notation for symmetri-
zation, using parentheses around the indices: Fði1 i2 ���iRÞ [25], since in
the complex expressions we are going to deal with, this notation
might soon become obscure. We did not adopt the Einstein sum-
mation convention either, since we will deal both with summa-
tions over co-ordinate indices, and with series summations. The
Einstein convention applies only to the former, and using it would
remove only part of the summation signs, which might have a con-
fusing result.

2. The direct tensor solution

2.1. Summary

When diffusion is described by a diffusion tensor of order R,
Di1 i2 ���iR , the apparent diffusion coefficient, A(x), measured in the
direction x, is given by:

AðxÞ ¼
X

i1 i2 ���iR
2fx;y;zg

gi1
ðxÞgi2

ðxÞ � � � giR ðxÞDi1 i2 ���iR : ð9Þ

(Henceforward, in summations over co-ordinate indices the
range {x, y, z} is understood and is not written explicitly.) Using
the infinite acquisition scheme, the inverse relationship we are
looking for, i.e. the DTS, must be an expression which integrates
over all directions (i.e. the sphere) and which is linear in A(x):

Di1 i2 ���iR ¼
1

4p

Z
X

Si1 i2 ���iR ðxÞAðxÞdx: ð10Þ

(The factor 1/4p is used for convenience.) S is the solution tensor,
which is required to depend on x only through g(x). The solution
tensor may also contain Kronecker deltas, dij, which play the role of
constant tensors.

We postulate that S is constructed of g(x)s and Kronecker del-
tas, using three basic operations: addition, tensor multiplication
and multiplication with real numbers. Since Di1 i2 ���iR is symmetric,
tensor products of g(x)s and Kronecker deltas have to be symmet-
ric and they need to have the following form:

TðR;qÞi1 i2 ���iR ðxÞ ¼ SYMðgi1 ðxÞgi2 ðxÞ � � � giq ðxÞdiqþ1 iqþ2 � � � diR�1 iR Þ ½q even�:
ð11Þ

Stated in words: T(R,q) consists of q components of g, comple-
mented with (R � q)/2 deltas to make a tensor of order R. The oper-
ator SYM guarantees that the result is symmetric. Our solution
tensor then is a linear combination of these T(R,q):

Si1 i2 ���iR ðxÞ ¼
X

q¼0;2;...;R

aðR; qÞT ðR;qÞi1 i2 ���iR ðxÞ; ð12Þ

with coefficients a(R, q), which are undetermined, as yet.
If the solution tensor has the correct form, substitution of Eqs.

(11), (12), and (9) into Eq. (10) will produce the identity. So the
essential question is: do coefficients a(R, q) exist, for which this
is the case? We shall demonstrate below that such coefficients in-
deed do exist, and that they are given by:

aðR; qÞ ¼ ðRþ qþ 1Þ!!
ðR� qÞ!!q!

ð�1Þ
R�q

2 ½q ¼ 0;2; . . . ;R�: ð13Þ

Fig. 1 shows the solution explicitly worked out for orders 0, 2, 4
and 6.
2.2. The H tensor equation

To deduce the coefficients a(R, q) we start with substituting Eqs.
(11), (12), and (9) into Eq. (10):

Di1 i2 ���iR ¼
1

4p

Z
X

X
q¼0;2;...;R

aðR; qÞ

� SYMðgi1 ðxÞgi2 ðxÞ � � � giq ðxÞdiqþ1 iqþ2 � � � diR�1 iR Þ

�
X

j1 j2 ���jR

gj1
ðxÞgj2

ðxÞ � � � gjR
ðxÞDj1 j2 ���jR dx ð14Þ

Reordering such that the integral over x is moved inward as
much as possible, and the summation over q is moved outward
yields

Di1 i2 ���iR ¼
X

q¼0;2;...;R

aðR; qÞ SYM
i1 i2 ���iR

diqþ1 iqþ2 � � � diR�1 iR

X
j1j2 ���jR

Dj1 j2 ���jR

 

� 1
4p

Z
X

gj1
ðxÞgj2

ðxÞ � � � gjR
ðxÞgi1 ðxÞgi2 ðxÞ � � � giq ðxÞdx

�
;

ð15Þ
where the subscripts under the SYM operator indicate that the
operator acts on the i indices only, i.e. the SYM operation is exe-
cuted after the summation over the j indices has been performed.
The integrals in Eq. (15) have the form

Hi1 i2 ���iP ¼
1

4p

Z
X

gi1 ðxÞgi2 ðxÞ � � � giP ðxÞdx; ð16Þ

with P = R, R + 2, . . . , 2R. Let nx, ny, and nz denote the number of
occurrences of x, y, and z in {i1, i2, . . . , iR}, so nx + ny + nz = P. By
substituting the co-ordinates of g from Eq. (4) into Eq. (16) we are
able to evaluate the integral, e.g. using a table of integrals [24]:

Hi1 i2 ���iP ¼
1

4p

Z 2p

0

Z p

0
ðsin#cosuÞnx ðsin#sinuÞny ðcos#Þnz sin#d#du

¼ ðnx �1Þ!!ðny �1Þ!!ðnz �1Þ!!
ðPþ1Þ!! ½nx;ny; and nz even�

¼ 0 ½otherwise�

8<
:
� Hðnx;ny;nzÞ ð17Þ

The result is called the H function, H(nx, ny, nz).
A disadvantage of Eq. (17) is that it is a function of nx, ny, nz in-

stead of i1, i2, . . . , iP, so the tensor structure is lost. An expression in
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tensor form, which is needed in this context, is found by observing
that the result of Eq. (17) is invariant under rotations of the co-
ordinate system; this is in fact a natural consequence of the inte-
gration over the sphere. A tensor of which the individual elements
are rotationally invariant is called an isotropic tensor [26]. One
may construct an even-order symmetric isotropic tensor by sym-
metrizing a product of Kronecker deltas, which obeys the following
relation:

1
P þ 1

SYMðdi1 i2 di3 i4 � � � diP�1 iP Þ ¼ Hðnx; ny; nzÞ ½P even� ð18Þ

Eq. (18) is proven as follows. The SYM-operator expands to P! terms
with in each term a product of P/2 deltas, and each with a unique
permutation of the indices i1, i2, . . . , iP. For a non-zero term, all del-
tas must yield 1, i.e. they must be of the form dxx, dyy, or dzz. It fol-
lows that for the existence of non-zero terms nx, ny, and nz have
to be even, otherwise the total result will be zero.

Given nx, ny, and nz even, the terms with a non-zero contribu-
tion consist of nx/2 deltas of the form dxx, ny/2 deltas of the form
dyy, and nz/2 deltas of the form dzz. The number of ways to divide
the P/2 deltas into three groups of sizes nx/2, ny/2, and nz/2 is given
by the multinomial distribution: (P/2)!/((nx/2)! � (ny/2)! � (nz/2)!).
Distributing the indices over their deltas may be done in
nx! � ny! � nz! ways. Some algebraic manipulation, using Eq. (8)
shows that this amounts to a total of P!! � (nx � 1)!! � (ny � 1)!! �
(nz � 1)!! permutations with a non-zero contribution. Dividing this
by P! (because of the SYM) and by (P + 1) (which is the factor be-
fore the SYM in Eq. (18)), the result of Eq. (17) is obtained.

Combining Eqs. (16)–(18) yields the H tensor equation:

1
4p

Z
X

gi1
ðxÞgi2

ðxÞ � � � giP ðxÞdx ¼
1

P þ 1
SYMðdi1 i2 di3 i4 � � � diP�1 iP Þ;

ð19Þ

which will be used repeatedly throughout this paper. Fig. 2 shows
examples of this equation, explicitly worked out for orders 2 and 4.
2.3. Further derivation

By substituting Eq. (19) into Eq. (15) we obtain:

Di1 i2 ���iR ¼
X

q¼0;2���R
aðR; qÞ SYM

i1 i2 ���iR

 
diqþ1 iqþ2 � � � diR�1 iR

X
j1 j2 ���jR

Dj1 j2 ���jR

� 1
Rþ qþ 1

SYMðdj1j2 � � � djR�1 jR di1 i2 � � � diq�1 iq Þ
!

ð20Þ

The innermost SYM expression in Eq. (20) consists of (R + q)!
terms having (R + q)/2 deltas each. These deltas can be divided into
three types. Firstly, deltas with one i and one j index; on summa-
tion over the j indices these deltas cause a substitution of a j index
under the diffusion tensor by an i index. Secondly, deltas with two j
indices; on summation over the j indices these deltas cause a con-
traction of the diffusion tensor (i.e. summing over two equal indi-
ces, which results in a tensor with an order lowered by 2).
=dgg δ∫ 1)()(
1 ωωω ijji =dgg
π

δ∫
Ω

3   )()(
4

ωωω

)(   )()()()(
4

1
SYM5

1
klijlkji =dgggg

π
δδ∫

Ω

ωωωωω
Ω

jkiljlikklij= δδ+δδ+δδ 15
1

15
1

15
1

jjj 151515

Fig. 2. The H tensor equation for orders P = 2 and 4.
Thirdly, deltas with two i indices; summation over the j indices
has no influence on them and they can be grouped with the deltas
before the summation sign.

To count how many terms there are with exactly s deltas of the
first type (s 6 q, s even) we first select from the total of R/2 + q/2
deltas three groups for the three types: this can be done in (R/
2 + q/2)!/{(R/2 � s/2)! � (q/2 � s/2)! � s!} ways. We select s i indices,
giving q!/((q � s)! � s!) ways, and s j indices: R!/((R � s)! � s!) ways.
We distribute them over the selected deltas of the first type: the i
indices give s! ways, the j indices also s! ways, and permutation of
the i and j index on the same delta produces an other 2s possibili-
ties. The R � s remaining j indices can be attached to the selected
deltas of the second type in (R � s)! ways, and likewise can the
remaining i indices be attached to the deltas of the third type in
(q � s)! ways. Multiplying all these possibilities and developing
this, we find a total of (R + q)!! � q! � R!/{(R � s)!! � (q � s)!! � s!}
terms. ‘‘Meta-mathematically” we write:

SYMðdj1j2 � � � djR�1 jR di1 i2 � � � diq�1 iq Þ

¼ 1
ðRþ qÞ!

X
s¼0;2;���;q

ðRþ qÞ!!q!R!

ðR� sÞ!!ðq� sÞ!!s!

�
s deltas with one i and one j index
�ðR=2� s=2Þ deltas with two j indices
�ðq=2� s=2Þ deltas with two i indices

8><
>:

9>=
>;

ð21Þ

It is not important exactly which i indices and which j indices
are attached to which deltas, because of the symmetry of the diffu-
sion tensor, and because of the symmetrizing effect of the outer-
most SYM operator in Eq. (20).

After summation over the j indices, terms with s deltas of
the first type give rise to a term in the result with (R/2 � q/2) +
(q/2 � s/2) = (R/2 � s/2) deltas and with a diffusion tensor having
s free indices and R � s contracted indices. We therefore define:

UðR;sÞi1 i2 ���iR ¼ SYM
i1 i2 ���iR

ðdisþ1 isþ2 � � � diR�1 iR

X
j1j2 ���jðR�sÞ=2

Di1 i2 ���is j1j1 j2j2 ���jðR�sÞ=2 jðR�sÞ=2
Þ

ð22Þ
(It follows that UðR;RÞi1 i2 ���iR ¼ Di1 i2 ���iR .)
Substituting Eq. (21) into Eq. (20) gives:

Di1 i2 ���iR ¼
X

q¼0;2;...;R

aðR; qÞ
ðRþ qþ 1Þ!

X
s¼0;2;...;q

ðRþ qÞ!!q!R!

ðR� sÞ!!ðq� sÞ!!s!
UðR;sÞi1 i2 ���iR ð23Þ

By reversing the order of summation over q and s we obtain:

Di1 i2 ���iR ¼
X

s¼0;2;...;R

UðR;sÞi1 i2 ���iR

�
X

q¼s;sþ2;...;R

aðR; qÞq!R!

ðRþ qþ 1Þ!!ðR� sÞ!!ðq� sÞ!!s!
ð24Þ

If we now demand that Eq. (24) is the identity, the factor after
U(R,R) has to equal 1 and the factors behind the other U(R,s) have
to be 0:

X
q¼s;sþ2;...;R

aðR; qÞq!R!

ðRþ qþ 1Þ!!ðR� sÞ!!ðq� sÞ!!s!

¼ 1 ½s ¼ R�
¼ 0 ½s < R�

�
ð25Þ

This is a triangular set of linear equations, which is straightfor-
wardly solved: a(R, R) follows from Eq. (25) with s = R; using the
solution of a(R, R) and putting s = R � 2 one can solve a(R, R � 2);
using a(R, R) and a(R, R � 2) and putting s = R � 4 one can solve
a(R, R � 4) and so forth. We leave it to the reader to solve the first
few coefficients, and see that they all are in agreement with Eq.
(13). To check that this is indeed the general expression for
a(R, q) we substitute Eq. (13) into Eq. (25). The left hand side of
Eq. (25) becomes:
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Fig. 3. The H tensor check for orders P = 2 and 4 and the corresponding
(P + 1)(P + 2)/2 individual tests to be performed. In the individual equations, the
index n has been dropped for clarity.
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X
q¼s;sþ2;...;R

ðRþ qþ 1Þ!!
ðR� qÞ!!q!

ð�1Þ
R�q

2
q!R!

ðRþ qþ 1Þ!!ðR� sÞ!!ðq� sÞ!!s!
ð26Þ

Simplifying this and then substituting h = (R � q)/2 and
t = (R � s)/2 yields:

R!

22tðR� 2tÞ!t!2
Xt

h¼0

ð�1Þh t!
h!ðt � hÞ! ð27Þ

For s = R, t = 0 Eq. (27) equals 1. For s < R, t > 0 the summation in
Eq. (27) yields 0; this is a well known series from binomial calculus
([24], it is also a special case of Eq. (A1)). This proves Eq. (13) and
we have derived the DTS.

2.4. Odd-order tensors

In the approach of Liu et al. [14] the phases of the diffusion mea-
surement signals, provided they can be measured, obey
U(x) = �U(�x) and they are modeled by a sum of odd-order ten-
sors. While this is essentially more complex than the approach in
this paper, where the apparent diffusion coefficients are modeled
by a single tensor, it might be useful to know that our approach
is applicable for odd-order tensors as well.

Following the derivation given above, for odd-order tensors Eqs.
(9) and (10) remain unchanged. For Eqs. (12), (14), and (15) q now
is odd: q = 1, 3, . . . , R. In Eq. (15) H tensors occur with order
P = R + 1, R + 3, . . . , 2R, so P is even, just as in the even-order case.
In Eq. (20) q = 1, 3, . . . , R. In Eq. (21) we see that the number of del-
tas of the first type (i.e. with one i and with one j index) always is
odd, so s = 1, 3, . . . , q. The resulting expression is unchanged. Eq.
(22) remains the same (now applied with odd s and R). In Eq.
(23) the summation indices become: q = 1, 3, . . . , R; s = 1, 3, . . . , q.
Reversing the summation order, Eq. (24), gives s = 1, 3, . . . , R;
q = s, s + 2, . . . , R. Eqs. (25)–(27) do not change.

So for odd-order tensors the same coefficients a(R, q) and the
same solution are obtained as for the even-order tensors, except
for the summation over q, which has odd values instead of even.

3. Finite acquisition schemes

3.1. The H tensor check

As mentioned above a (finite) acquisition scheme is a set of
directions {g[1], g[2], . . . , g[N]} in which the apparent diffusion
coefficient is measured. The g[n] have to be sufficiently indepen-
dent, and N has to be equal to or larger than M, being the number
of independent elements of the diffusion tensor of order R. We
investigate whether there are finite acquisition schemes for which
the DTS, as derived above, is valid.

Since both A(x) (Eq. (9)) and S(x) (Eqs. (11) and (12)) depend
on x through g(x), we define A[n] and S[n] by replacing g(x) by
g[n], giving rise to the following direct tensor solution for a finite
acquisition scheme (cf. Eq. (10)):

Di1 i2 ���iR ¼
1
N

XN

n¼1

Si1 i2 ���iR ½n�A½n�; ð28Þ

where now the solution tensor S[n] is known.
Following the derivation of the DTS of the previous sections, we

see that a necessary and sufficient condition for Eq. (28) to be valid,
is that Eq. (29), being the discrete version of the H tensor equation
(Eq. (19)), holds for all orders P = R, R + 2, . . . , 2R:

1
N

XN

n¼1

gi1 ½n�gi2 ½n� � � � giP ½n� ¼
1

P þ 1
SYMðdi1 i2 di3 i4 � � � diP�1 iP Þ ð29Þ

Unlike the case with the infinite acquisition scheme, Eq. (29) is
not generally valid. Instead it has to be checked for every acquisi-
tion scheme. In practice, when checking a particular scheme, it is
convenient to use the H function, Eq. (18). Because of the symme-
try, one needs to perform only (P + 1)(P + 2)/2 tests to check Eq.
(29) for order P. In Fig. 3 these tests are explicitly shown for orders
P = 2 and 4.

3.2. Condition numbers

The noise behavior of an acquisition scheme may be described
by the condition number, j [8,16–18]. The smaller j the better
the noise properties. As described in the Introduction, in the tradi-
tional solution the independent elements of the diffusion tensor of
order R are written as a vector: Dm, m = 1 � � �M, M = (R + 1)(R + 2)/2,
and Eq. (9) is written as a matrix–vector relationship:
A[n] =

P
mGnmDm. A method to calculate j [17] defines the matrix

K as the product of Gnm with its transpose: Kmp =
P

nGnmGnp. Then
j equals the square root of the ratio of the largest and smallest
eigenvalues of K, i.e. j =

pðemax=eminÞ. Although this definition is
not in tensor form, it is possible to follow the approach and to cal-
culate j for the direct tensor solution.

To transform the diffusion tensor Di1 i2 ���iR into a vector Dm, we
use a list of independent index combinations for a symmetric
tensor. For R = 2 we have {xx, yy, zz, xy, xz, yz}, and for R = 4
{xxxx, yyyy, zzzz, xxyy, xxzz, yyzz, xyyy, xxxy, xyzz, xzzz, xxxz, xyyz,
yzzz, yyyz, xxyz}, etc. (the order of combinations in the list does not
influence the result, as long as it is consequently adhered to). We
now put vector component Dm equal to the diffusion tensor
element with index combination nr. m from the list:
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Dm ¼ Di1 ½m�i2 ½m����iR ½m�: ð30Þ

Then the matrix Gnm is given by:

Gnm ¼ lðmÞgi1 ½m�½n�gi2 ½m�½n� � � � giR ½m�½n�; ð31Þ

where l(m) is the multiplicity factor, i.e. the number of times the
tensor element with indices (i1[m], i2[m], . . . , iR[m]) occurs in a sym-
metric tensor of order R [7],

lðmÞ ¼ R!

nxðmÞ!nyðmÞ!nzðmÞ!
; ð32Þ

where nx(m), ny(m) and nz(m) are the number of occurrences of x, y
and z in {i1[m], i2[m], . . . , iR[m]}.

Assuming that the DTS holds, i.e. Eq. (29) is valid, and using the
functional expression for the H tensor, Eq. (18), as well as expres-
sion (32), the elements of matrix K are written in closed form:

Kmp ¼
XN

n¼1

Gnm �Gnp

¼
XN

n¼1

lðmÞgi1 ½m�½n�gi2 ½m�½n� � � �giR ½m�½n� �lðpÞgi1 ½p�½n�gi2 ½p�½n� � � �giR ½p�½n�

¼ R!2ðnxðmÞþnxðpÞ�1Þ!!ðnyðmÞþnyðpÞ�1Þ!!ðnzðmÞþnzðpÞ�1Þ!!
nxðmÞ!nyðmÞ!nzðmÞ!nxðpÞ!nyðpÞ!nzðpÞ!ð2Rþ1Þ!!

½nxðmÞþnxðpÞ;nyðmÞþnyðpÞ;nzðmÞþnzðpÞ even�
¼ 0 ½otherwise�

8>>><
>>>:

ð33Þ

In Eq. (33) the dependency on the measurement directions is
‘‘summated away”, so it follows that, for the DTS, K and j are
invariant for rotations of the co-ordinate system. For order 2 we
have:

KðR¼2Þ ¼ 1
15

3 1 1 0 0 0
1 3 1 0 0 0
1 1 3 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

0
BBBBBBBB@

1
CCCCCCCCA

jðR¼2Þ ¼ 1
2

ffiffiffiffiffiffi
10
p

� 1:58114

ð34Þ

Both the matrix and the value of j(R=2) are well known [17].
Using the general expression of Eq. (33), however, we may evaluate
j for any order R. For R = 4 we obtain:

KðR¼4Þ ¼ 1
315

35 3 3 30 30 6 0 0 0 0 0 0 0 0 0
3 35 3 30 6 30 0 0 0 0 0 0 0 0 0
3 3 35 6 30 30 0 0 0 0 0 0 0 0 0

30 30 6 108 36 36 0 0 0 0 0 0 0 0 0
30 6 30 36 108 36 0 0 0 0 0 0 0 0 0
6 30 30 36 36 108 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 80 48 48 0 0 0 0 0 0
0 0 0 0 0 0 48 80 48 0 0 0 0 0 0
0 0 0 0 0 0 48 48 144 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 80 48 48 0 0 0
0 0 0 0 0 0 0 0 0 48 80 48 0 0 0
0 0 0 0 0 0 0 0 0 48 48 144 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 80 48 48
0 0 0 0 0 0 0 0 0 0 0 0 48 80 48
0 0 0 0 0 0 0 0 0 0 0 0 48 48 144

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

jðR¼4Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
221þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36745
p

221�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36745
p

s
� 3:75235 ð35Þ

This is in agreement with the experimental value published re-
cently in a comparison of the noise behavior of acquisition
schemes to measure a fourth-order tensor [8].

For R = 6 we numerically found the value: j = 9.835047.
In conclusion: when the DTS is valid, the condition number of
the measurement is invariant under rotations of the co-ordinate
system, and its value depends only on the order of the tensor being
measured, not on the acquisition scheme used.

3.3. The order of an acquisition scheme

If for an acquisition scheme Eq. (29) is valid for an order P, then
it is also valid for orders P � 2, P � 4, . . . This can be shown by con-
tracting both sides of Eq. (29) once (i.e. put two indices equal, and
summate over them) and working this out algebraically. A direct
consequence is that if Eq. (29) is not valid for a certain order Q, it
will not be valid for orders Q + 2, Q + 4 . . . either. So when there is
an order P for which Eq. (29) is valid, while for order P + 2 it is
not, then P is the maximum order for which Eq. (29) holds, and it
follows that the DTS is valid for this acquisition scheme for all or-
ders up to and including P/2. We will call this order the order of the
acquisition scheme, RS = P/2. A finite acquisition scheme must have
a finite order RS, because an upper bound for RS is given by the con-
dition (RS + 1)(RS + 2)/2 6 N.

A well known source for acquisition schemes with directions
that are regularly distributed over the sphere, is formed by the ver-
tices of the Platonic and Archimedean solids (Fig. 4, [27,28]).
(Although they all possess regularity and symmetry, not all of them
are quite homogeneous, as can be seen from the rather large differ-
ences in face surfaces of some of the solids in Fig. 4.) With the
exceptions of the tetrahedron and the truncated tetrahedron, the
number of independent directions in these schemes equals half
the number of vertices. We have calculated RS using exact expres-
sions for the vertices, as can be found in [28], except for the snub
cube and the snub dodecahedron, in which case we used a floating
point approximation. As depicted in Fig. 4, we find that all Platonic
and Archimedean schemes with icosahedral symmetry have RS = 2,
the other schemes have RS = 1.

To investigate the rotational invariance of the order of a
scheme, we show that if Eq. (29) holds for a order P for a specific
scheme, it holds as well when we rotate the scheme (or equiva-
lently when we rotate the co-ordinate system). Let the rotation
be given by the matrix operator Rij, and the rotated scheme by
{
P

jRijgj[n], n = 1 � � � N}, then we have to prove that:

1
N

XN

n¼1

X
j1 j2 ���jN

Ri1 j1 gj1
½n�Ri2 j2 gj2

½n� � � �RiP jP gjP
½n� ¼ 1

Pþ 1
SYMðdi1 i2 di3 i4 � � �diP�1 iP Þ

%ð36Þ

Rotating Eq. (36) backwards, i.e. subjecting both sides toX
i1 i2 ���iP

R�1
k1 i1

R�1
k2 i2
� � �R�1

kP iP
ð�Þ; ð37Þ

and, using the orthogonality of the rotation, R�1
ij ¼ Rji, we obtain

1
N

XN

n¼1

gk1
½n�gk2

½n� � � � gkP
½n�

¼
X

i1 i2 ���iP

R�1
k1 i1

R�1
k2 i2
� � �R�1

kP iP

1
P þ 1

SYMðdi1 i2 di3 i4 � � � diP�1 iP Þ

¼ 1
P þ 1

SYM
X

i1 i2 ���iP

R�1
k1 i1

di1 i2 Ri2k2 R�1
k3 i3

di3 i4 Ri4k4 � � �R
�1
kP�1 iP�1

diP�1 iP RiP kP

 !

¼ 1
P þ 1

SYMðdk1k2 dk3k4 � � � dkP�1kP
Þ; ð38Þ

which is Eq. (40) again. So if Eq. (40) holds for an acquisition
scheme for order P, it also holds for the rotated scheme for order
P, and therefore the DTS for order R = P/2 holds as well. We conclude
that the order of an acquisition scheme is a rotationally invariant
parameter.
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Fig. 4. Acquisition schemes determined by the vertices of the Platonic solids (first
column) and the Archimedean solids (other columns). With every scheme the
number of directions of the scheme, Nd, is given in parentheses. RS is the order of the
scheme, i.e. the maximum order for which the direct tensor solution is valid.
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3.4. Weighted acquisition schemes

Searching for schemes with a higher order, we investigated the
tessellations of the icosahedron, which are being regularly used in
literature [7,9,17,18,29]. Rather disappointingly, though, all tessel-
lations we checked have order 2. As described in the caption of
Fig. 5, this can be understood by the fact that tessellations of the
icosahedron are essentially inhomogeneous; they do not converge
to the infinite acquisition scheme, which is homogeneous per
definition.

Our way to obtain acquisition schemes with a higher order fol-
lows from the observation that the direct tensor solution in a finite
acquisition scheme may be seen as a discrete approximation of the
continuous (integral) solution of the infinite scheme. In such an
approximation one should take into account the variable of inte-
gration dx: each direction in the finite scheme represents a solid
angle. Therefore we introduce weighting factors, w[n], connected
Fig. 5. Tessellations of the icosahedron: from left to right 1 to 5 times tessellated. Small
vertices is larger than in the lighter areas. One sees that for increasing degree of tessellatio
illustrating the tessellations do not converge to a homogeneous scheme, and therefore d
to the directions, with w[n]/N in the finite scheme corresponding
to dx/4p in the infinite scheme. Eq. (28) then becomes:

Di1 i2 ���iR ¼
1
N

XN

n¼1

Si1 i2 ���iR ½n�A½n�w½n�; ð39Þ

and Eq. (29) is modified into:

1
N

XN

n¼1

gi1 ½n�gi2 ½n� � � � giP ½n�w½n� ¼
1

P þ 1
SYMðdi1 i2 di3 i4 � � � diP�1 iP Þ ð40Þ

It can easily be checked that like Eq. (29) also Eq. (40) has the
property that if it is holds for order P, it also holds for orders
P � 2, P � 4, . . ., so everything we derived about the order of an
acquisition scheme, remains valid for a weighted acquisition
scheme.

To calculate the condition number of a weighted acquisition
scheme, we introduce the N � N diagonal matrix U, with
Unn =

p
w[n]. For the K-matrix we now have K = (GU)T(GU) and

Eq. (33) holds in the same way, with the same resulting condition
numbers as in the non weighted case.

Since in the Platonic and Archimedean schemes all directions
are equivalent, i.e. the vertices are indistinguishable, there is no
useful way to introduce weighting factors, since there is no sensi-
ble way to label one direction with a different weighting factor
than another. The vertices of the tessellations of the icosahedron,
however, are distinguishable. It is possible to divide these schemes
into subsets of equivalent points, so different weighting factors can
be attributed to each subset.

Let us suppose in a specific scheme there are m different subsets
and therefore m different weighting factors. Applying Eq. (40) for
an order P gives a set of linear equations with m unknowns. Choos-
ing the order too low gives an underdetermined set of equations,
choosing the order too high gives an inconsistent set of equations.
The highest order which produces a solvable set of equations
determines the order of the acquisition scheme, RS = Pmax/2, as well
as the values of the weighting factors.

Fig. 6 shows the results for a number of tessellations of the ico-
sahedron as well as for the combination of icosahedron and
dodecahedron. This is a useful scheme with less directions than
the 1x tessellated icosahedron, while still possessing order 4. We
see that with the use of weighting factors schemes with higher or-
ders can indeed be obtained.

4. Additional results

4.1. Relations between tensors of different orders

If we measure a voxel whose diffusion properties are governed
by a diffusion tensor of order R,

AðRÞðxÞ ¼
X

i1 i2 ���iR

gi1 ðxÞgi2 ðxÞ � � � giR ðxÞDi1 i2 ���iR ; ð41Þ

and we use these values to calculate a diffusion tensor of order T,

DðR!TÞ
i1 i2 ���iT ¼

1
4p

Z
X

Si1 i2 ���iT ðxÞA
ðRÞðxÞdx; ð42Þ
er faces are rendered darker than bigger ones, so in the darker areas the density of
n the vertex density close to the original vertices of the icosahedron remains higher,
o not converge to the infinite acquisition scheme.
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Fig. 7. Examples of relations between tensors of different orders.
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then substitution of Eq. (41) into Eq. (42) gives a natural relation-
ship between two diffusion tensors of different order.

Working this out, analogously to the derivation of the DTS, but
using the DTS itself (Eqs. (11)–(13)), we obtain the following
expression:

DðR!TÞ
i1 i2 ���iT ¼

X
s¼0;2;...;minðR;TÞ

bðT;R; sÞUðT;R;sÞi1 i2 ���iT ðxÞ; ð43Þ

with the coefficients b(T, R, s) obeying:

bðT;R; sÞ ¼ R!

ðR� sÞ!!s!

�
X

q¼s;sþ2;...;T

ð�1Þ
T�q

2
ðT þ qþ 1Þ!!

ðT � qÞ!!ðRþ qþ 1Þ!!ðq� sÞ!! ; ð44Þ

and where the tensor U(T,R,s) is a generalization of U(R,s) (Eq. (22)):
U(T,R,s) is a tensor of order T, consisting of a diffusion tensor of order
R which is contracted (R � s)/2 times (thus having order s), supple-
mented with (T � s)/2 deltas to obtain a tensor of order T, which is
finally symmetrized:

UðT;R;sÞi1 i2 ���iT ¼ SYM
i1 i2 ���iT

disþ1 isþ2 � � � diT�1 iT

X
j1 j2 ���jðR�sÞ=2

Di1 i2 ���is j1 j1 j2 j2 ���jðR�sÞ=2jðR�sÞ=2

0
@

1
A:
ð45Þ

We first evaluate Eq. (44) for T > R. Dividing the factor
(T + q + 1)!! by (R + q + 1)!! leaves a polynomial in q in the numer-
ator behind the summation sign. We substitute k = (q � s)/2 for q,
and rewrite the remaining double factorials behind the summation
sign as ordinary factorials (with help of Eq. (8)):

bðT;R; sÞ ¼ R!

ðR� sÞ!!s!
ð�1Þ

T�s
2 2

s�R
2

�
XT�s

2

k¼0

ð�1Þk
Tþsþ1

2 þ k
� �

Tþs�1
2 þ k

� �
� � � Rþsþ3

2 þ k
� �

T�s
2 � k

� �
!k!

: ð46Þ

The series is equivalent to Eq. (A2) from Appendix A, with
N = (T � s)/2. The degree of the polynomial in k in the numerator
behind the summation sign equals (T � R)/2, which is always smal-
ler than N, except for s = R, when it equals N, and only in that case
the result is unequal to zero. A little algebra yields:
bðT;R; sÞ ¼
1 ½s ¼ R; T > R�
0 ½s < R; T > R�

�
ð47Þ

and Eq. (43) takes a relatively simple form:

DðR!TÞ
i1 i2 ���iT ¼ SYMðDi1 i2 ���iR diRþ1 iRþ2 � � � diT�1 iT Þ ½T > R� ð48Þ

In words: to express a diffusion tensor of order R in terms of a
tensor with a higher order T, supplement it with deltas to get a ten-
sor of order T, and symmetrize.

Following the same steps for T < R, an extra polynomial arises in
the denominator behind the summation sign, which makes the
evaluation of Eq. (44) considerably more complex. We confine our-
selves to the case T = R � 2. In that case, dividing (T + q + 1)!! by
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(R + q + 1)!! leaves a factor R + q + 1 in the denominator. Substitut-
ing again k = (q � s)/2 for q and rewriting the double factorials into
ordinary factorials:

bðR� 2;R; sÞ ¼ R!

ðR� sÞ!!s!
ð�1Þ

R�s�2
2 2

s�R
2
XR�s�2

2

k¼0

ð�1Þk
Rþs

2 þ kþ 1
2

� �
R�s�2

2 � k
� �

!k!

ð49Þ

Applying Eq. (A5) from the appendix, with j = (R + s)/2 and
N = (R � s � 2)/2, we find:

bðR� 2;R; sÞ ¼ R!ðRþ s� 1Þ!!
ðR� sÞ!!s!ð2R� 1Þ!! ð�1Þ

R�s�2
2 ; ð50Þ

which substituted into Eq. (43) yields the expression for D(R?R�2).
Fig. 7 shows some of these relationships explicitly worked out

for orders 0, 2, 4 and 6. We observe that two special cases of these
relationships were deduced before. Özarslan and Mareci [7] found
expressions for D(6?4) and D(4?2), using spherical harmonics; not in
the tensor form we present here, however, but in the form of tab-
ulated relations between tensor elements. Moakher [12] derived
the expression for D(4?2) in tensor form.

4.2. The Platonic Variance Property

The Platonic Variance Property as introduced in [22] is defined
as:

A ¼ k; VarA ¼ 2
5

Vark; ð51Þ

where k denotes the eigenvalues of the second-order diffusion ten-
sor and A the measured apparent diffusion coefficients. With this
property a number of scalar invariants, like the Fractional Anisot-
ropy, can be efficiently expressed as direct functions of the A[n].
In [22] some acquisition schemes were presented that possess this
property. Using the results of the present paper, however, we can
make more general statements.

Let us rewrite Eq. (51) in terms of the second-order diffusion
tensor:

A ¼ 1
3

X
i

Dii; A2 � A2 ¼ 2
5

1
3

X
ij

D2
ij �

1
3

X
i

Dii

 !2
8<
:

9=
;: ð52Þ

For the second-order diffusion measurement we have:

A½n� ¼
X

ij

gi½n�gj½n�Dij: ð53Þ

Using Eq. (53) we evaluate Mean A and Mean A2, taking into ac-
count the weighting factors for a weighted acquisition scheme:

A ¼ 1
N

XN

n¼1

w½n�A½n� ¼
X

ij

Dij
1
N

XN

n¼1

gi½n�gj½n�w½n� ¼
X

ij

Dij
1
3

dij

¼ 1
3

X
i

Dii; ð54Þ

A2 ¼ 1
N

XN

n¼1

w½n�
X

ij

gi½n�gj½n�Dij

X
kl

gk½n�gl½n�Dkl

¼
X

ij

X
kl

DijDkl
1
N

XN

n¼1

gi½n�gj½n�gk½n�gl½n�w½n�

¼
X

ij

X
kl

DijDkl
1

15
dijdkl þ dikdjl þ dildjk
� �

¼ 1
15

X
i

Dii

 !2

þ 2
15

X
ij

D2
ij ð55Þ
Eqs. (54) and (55) are equivalent to Eq. (52). The essential point is,
that we used the H tensor equation for order 2 (Eq. (54)) and for or-
der 4 (Eq. (55)). The conclusion therefore is that the Platonic Vari-
ance Property holds for all (weighted) acquisition schemes with order
RS P 2.

Furthermore, by inspection of Eqs. (54) and (55) we arrive at the
conclusion that, if we want to extend the Platonic Variance Method
to calculate scalars which are polynomials of degree 3 of the eigen-
values (e.g. Skewness), and we consequently require that Mean A3

be a rotationally invariant function of the diffusion tensor, we need
to use an acquisition scheme with order RS P 3.

5. Discussion

Our first question was: Does there exist a general expression for
the inverse of Eq. (3) that preserves the tensor form? The question
has been answered in the affirmative. The DTS is derived algebra-
ically as an exact linear expression, which, resubstituted in Eq. (3)
yields the identity equation. The traditional solution has the same
properties and it follows that in acquisition schemes where the di-
rect tensor solution holds, it must be equal to the traditional solu-
tion. In this respect the direct tensor solution is not a new tool for
the actual calculation of the tensor from measured data (although
it can be used for this purpose: see Appendix B). Its true value lies
in the tensor form, and in the ensuing properties and insights.

With respect to the form of the solution tensor, we argued that
it should be built up out of unit vectors, gi(x), and Kronecker del-
tas, dij. We restricted ourselves, however, to using the operations:
addition, tensor multiplication and multiplication by real numbers.
Although the fact that a solution indeed was found may be seen as
a justification for this approach, questions about its generality
might arise. In principle three extra possibilities to construct the
solution tensor exist: multiplication by scalars that are a function
of the direction x, integration over x, and contraction of indices.
A scalar function of x might be obtained by contracting a pair of
gi(x). Since

P
igi(x)gi(x)=1, however, this is not a useful option.

Because of the H tensor equation (Eq. (19)), integrating a number
of gi(x) over x yields an expression in dij, which is covered already
by our approach. Likewise do the remaining possible contractions
fail to yield something new:

P
igi(x)dij = gj(x),

P
idii = 3,P

idijdik = djk. Therefore there are no possibilities known to us,
which could provide a more general form of the solution tensor
than the one derived in this paper.

We turn to our second question: Can we use this expression to
formulate mathematical properties and a simple checking procedure
for acquisition schemes with a rotationally invariant condition num-
ber? Indeed, we have found the following properties:

� If for an acquisition scheme the H tensor equation for order P
holds, then the DTS is valid for all orders R 6 P/2. Checking if
the H tensor equation holds requires testing (P + 1)(P + 2)/2
algebraic equations.
� There is a maximum order for which the DTS is valid; this is

called the order of the acquisition scheme, RS, which is a rota-
tionally invariant parameter.
� If for a specific acquisition scheme the DTS is valid, then the

condition number is rotationally invariant and it depends only
on the order of the tensor to be measured, not on the acquisition
scheme.
� The introduction of weighted acquisition schemes opens the

possibility of constructing schemes with higher orders, by solv-
ing a set of linear equations.

This is a great improvement compared to the way acquisition
schemes have been analyzed thus far. The procedures presented
facilitate the use of acquisition schemes with rotationally invariant
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Fig. 8. Elements of the direct solution tensor for orders 2 and 4, expressed in the
Cartesian components of g(x): x = gx(x), y = gy(x) and z = gz(x), so x2 + y2 + z2 = 1.
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condition numbers such that reasons to use improper schemes dis-
appear. We expect this will be a valuable tool in the study of cross-
ing fibers, using fourth-order tensors, as well as in possible future
applications of higher order GDTI.

Concerning the variations in noise behavior of a GDTI measure-
ment, two effects must be considered separately. First there are
rotations of the co-ordinate system relative to the physical setup,
which we have considered above. This purely mathematical oper-
ation should have no effect on the outcomes of any physical mea-
surement. Since with respect to the acquisition scheme, the noise
behavior is characterized by the condition number, the rotational
invariance of the condition number is a prerequisite for a proper
acquisition scheme. The second source of variations in the noise
originates from rotations of the tensor being measured, relative
to the acquisition scheme (or vice versa). With the exception of iso-
tropic diffusion, such rotations always give variations in the noise
behavior, since they are caused by the finiteness of the scheme;
only an infinite scheme would be invariant in this respect. It is
therefore not realistic to require rotational invariance of this sec-
ond effect.

We described two more applications of the direct tensor solu-
tion. First there are the relations between tensors of different or-
der. For some specific cases such relations have been derived
before [7]; our expressions, however, have a larger generality and
they are, of course, in tensor form. Second there is the Platonic Var-
iance Method, which we previously derived for a few specific
acquisition schemes [22]. The direct tensor solution tells us that
it is valid for all second-order schemes, and shows at the same time
how this method can be extended by using higher-order acquisi-
tion schemes. Although these applications surely have their practi-
cal use, they demonstrate above all the value of the direct tensor
solution as a tool to increase our mathematical insight in GDTI.

Throughout this paper we have seen that the H tensor equation
plays a pivotal rule; it is used in the derivation of the direct tensor
solution, and in every of the applications we presented. To test if
the direct tensor solution is valid for a finite acquisition scheme,
testing the H tensor equation is sufficient. To our knowledge this
equation has not appeared in literature before, and certainly not
in the context of GDTI, which is remarkable, considering its ele-
gance and generality.

A shortcoming of the work presented here is that the higher-or-
der acquisition schemes are limited to tessellations of the icosahe-
dron. There exist methods to generate more homogeneous
acquisition schemes, like simulated electrostatic repulsion
[21,30]. It is not clear, however, how and if weighting factors can
be attributed to such schemes. In [29], concerning the integration
of spherical harmonic functions, it was suggested, that ‘‘the
weights in the summation that approximate the integral are equal
to the Voronoi areas for the sampling points on the unit sphere”.
We did some preliminary checks on the tessellated icosahedra,
but the weighting factors obtained from the Voronoi areas seem
to not exactly equal the weighting factors derived in this paper.
This remains a task for future investigations.

An important issue is raised by the fact that diffusion tensors al-
ways are positive semidefinite (PSD). In the presence of noise, nei-
ther the traditional method nor the direct tensor solution
guarantee that the resulting diffusion tensor is PSD. An alternative
method for the measurement of fourth-order diffusion tensors,
which preserves PSDness, is based on a reparametrization of the
traditional method [9,11,31]. We expect that the combination of
this method, with the proper acquisition schemes as presented in
this paper, will take advantage of the rotational invariance proper-
ties. This issue, however, needs further investigation.

Another approach to preserve PSDness uses Riemannian geom-
etry and log-Euclidean metrics. In [32–34] this is applied in the
manipulation of second-order tensors (like adding and interpolat-
ing). When used to estimate fourth-order tensors [35], however,
the fourth-order tensor is regrouped into a second-order tensor
in a six dimensional space, which is the kind of procedure we have
tried to avoid. So it is unclear at this moment, whether the Rie-
mannian approach can be reconciled with the DTS.

In conclusion: we have presented the Direct Tensor Solution,
which is a new equation in tensor form that is the inversion of
the basic equation of (generalized) diffusion tensor MRI. The DTS
gives a number of interesting new mathematical insights, the most
important of which is about the analysis and design of acquisition
schemes with a condition number that is rotationally invariant.
This may have immediate practical consequences in the measure-
ment of higher-order diffusion tensors.

Appendix A. Series

The basis for the series in Eqs. (46) and (49) can be found in
[36]. Here we give both a form which is similar to that in [36]
(Eqs. (A1) and (A3)), and a form that we use in this paper (Eqs.
(A2) and (A5)).

Ref. [36] Eq. (6.6.3):

XN

k¼0

ð�1Þk
N

k

	 �
ða0 þ a1kþ � � � þ amkmÞ

¼
0 ½m < N�
ð�1ÞNN!am ½m ¼ N�

(
½N > 0� ðA1Þ

Division by N! yields:

XN

k¼0

ð�1Þk

ðN � kÞ!k!
ða0 þ a1kþ � � � þ amkmÞ

¼
0 ½m < N�
ð�1ÞNam ½m ¼ N�

(
½N > 0� ðA2Þ

Ref. [36] Eq. (6.6.8), where Pm(k) is a polynomial in k of degree
m:
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XN

k¼0

ð�1Þk
N

k

	 �
1

aþ k
Pmðx� kÞ ¼ N!CðaÞ

CðN þ aþ 1Þ Pmðxþ aÞ ½m 6 N�

ðA3Þ

In Eq. (49) the polynomial Pm equals 1 and a is a half odd inte-
ger: a = j + 1/2. For this case, Eq. (A3) can be rewritten, using

C nþ 1
2

	 �
¼

ffiffiffiffi
p
p

2n ð2n� 1Þ!! ðA4Þ

([24]: 8.339.2), as:

XN

k¼0

ð�1Þk

ðN � kÞ!k!
� 1
jþ kþ 1

2

¼ ð2j� 1Þ!!
ð2N þ 2jþ 1Þ!! 2Nþ1 ðA5Þ
Appendix B. Solution tensors in Cartesian co-ordinates

When one uses an acquisition scheme, with the directions given
in Cartesian co-ordinates, and one wants to use the DTS to calcu-
late the diffusion tensor (Eqs. (28) and (39)), Fig. 8 may be useful:
it gives the elements of the solution tensor for order 2 and 4, ex-
pressed in the Cartesian components of g(x).
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